1. 简介

NVIDIA device plugin 通过k8s daemonset的方式部署到每个k8s的node节点上,实现了Kubernetes device plugin的接口。

提供以下功能:

  • 暴露每个节点的GPU数量给集群
  • 跟踪GPU的健康情况
  • 使在k8s的节点可以运行GPU容器

2. 要求

  • NVIDIA drivers ~= 384.81
  • nvidia-docker version > 2.0 (see how to install and it's prerequisites#prerequisites))
  • docker configured with nvidia as the default runtime.
  • Kubernetes version >= 1.10

3. 使用

3.1. 安装NVIDIA drivers和nvidia-docker

提供GPU节点的机器,准备工作如下

  1. 安装NVIDIA drivers ~= 384.81
  2. 安装nvidia-docker version > 2.0

3.2. 配置docker runtime

配置nvidia runtime作为GPU节点的默认runtime。

修改文件/etc/docker/daemon.json,增加以下runtime内容。

{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}

3.3. 部署nvidia-device-plugin

$ kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-beta4/nvidia-device-plugin.yml

nvidia-device-plugin的daemonset yaml文件如下:

# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: nvidia-device-plugin-daemonset
  namespace: kube-system
spec:
  selector:
    matchLabels:
      name: nvidia-device-plugin-ds
  updateStrategy:
    type: RollingUpdate
  template:
    metadata:
      # This annotation is deprecated. Kept here for backward compatibility
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ""
      labels:
        name: nvidia-device-plugin-ds
    spec:
      tolerations:
      # This toleration is deprecated. Kept here for backward compatibility
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      - key: CriticalAddonsOnly
        operator: Exists
      - key: nvidia.com/gpu
        operator: Exists
        effect: NoSchedule
      # Mark this pod as a critical add-on; when enabled, the critical add-on
      # scheduler reserves resources for critical add-on pods so that they can
      # be rescheduled after a failure.
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      priorityClassName: "system-node-critical"
      containers:
      - image: nvidia/k8s-device-plugin:1.0.0-beta4
        name: nvidia-device-plugin-ctr
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: ["ALL"]
        volumeMounts:
          - name: device-plugin
            mountPath: /var/lib/kubelet/device-plugins
      volumes:
        - name: device-plugin
          hostPath:
            path: /var/lib/kubelet/device-plugins

3.4. 运行GPU任务

创建一个GPU的pod,pod的资源类型指定为nvidia.com/gpu

apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
spec:
  containers:
    - name: cuda-container
      image: nvidia/cuda:9.0-devel
      resources:
        limits:
          nvidia.com/gpu: 2 # requesting 2 GPUs
    - name: digits-container
      image: nvidia/digits:6.0
      resources:
        limits:
          nvidia.com/gpu: 2 # requesting 2 GPUs

4. 构建和运行nvidia-device-plugin

4.1. docker方式

4.1.1. 编译

  • 直接拉取dockerhub的镜像
$ docker pull nvidia/k8s-device-plugin:1.0.0-beta4
  • 拉取代码构建镜像
$ docker build -t nvidia/k8s-device-plugin:1.0.0-beta4 https://github.com/NVIDIA/k8s-device-plugin.git#1.0.0-beta4
  • 修改nvidia-device-plugin后构建镜像
$ git clone https://github.com/NVIDIA/k8s-device-plugin.git && cd k8s-device-plugin
$ git checkout 1.0.0-beta4
$ docker build -t nvidia/k8s-device-plugin:1.0.0-beta4 .

4.1.2. 运行

  • docker本地运行
$ docker run --security-opt=no-new-privileges --cap-drop=ALL --network=none -it -v /var/lib/kubelet/device-plugins:/var/lib/kubelet/device-plugins nvidia/k8s-device-plugin:1.0.0-beta4
  • daemonset运行
$ kubectl create -f nvidia-device-plugin.yml

4.2. 非docker方式

4.2.1. 编译

$ C_INCLUDE_PATH=/usr/local/cuda/include LIBRARY_PATH=/usr/local/cuda/lib64 go build

4.2.2. 本地运行

$ ./k8s-device-plugin

参考:

Copyright © www.huweihuang.com 2017-2018 all right reserved,powered by GitbookUpdated at 2019-12-11 18:53:14

results matching ""

    No results matching ""