如果要开发一个Dynamic Provisioner,需要使用到the helper library

1. Dynamic Provisioner

1.1. Provisioner Interface

开发Dynamic Provisioner需要实现Provisioner接口,该接口有两个方法,分别是:

  • Provision:创建存储资源,并且返回一个PV对象。
  • Delete:移除对应的存储资源,但并没有删除PV对象。

Provisioner 接口源码如下:

// Provisioner is an interface that creates templates for PersistentVolumes
// and can create the volume as a new resource in the infrastructure provider.
// It can also remove the volume it created from the underlying storage
// provider.
type Provisioner interface {
    // Provision creates a volume i.e. the storage asset and returns a PV object
    // for the volume
    Provision(VolumeOptions) (*v1.PersistentVolume, error)
    // Delete removes the storage asset that was created by Provision backing the
    // given PV. Does not delete the PV object itself.
    //
    // May return IgnoredError to indicate that the call has been ignored and no
    // action taken.
    Delete(*v1.PersistentVolume) error
}

1.2. VolumeOptions

Provisioner接口的Provision方法的入参是一个VolumeOptions对象。VolumeOptions对象包含了创建PV对象所需要的信息,例如:PV的回收策略,PV的名字,PV所对应的PVC对象以及PVC的StorageClass对象使用的参数等。

VolumeOptions 源码如下:

// VolumeOptions contains option information about a volume
// https://github.com/kubernetes/kubernetes/blob/release-1.4/pkg/volume/plugins.go
type VolumeOptions struct {
    // Reclamation policy for a persistent volume
    PersistentVolumeReclaimPolicy v1.PersistentVolumeReclaimPolicy
    // PV.Name of the appropriate PersistentVolume. Used to generate cloud
    // volume name.
    PVName string

    // PV mount options. Not validated - mount of the PVs will simply fail if one is invalid.
    MountOptions []string

    // PVC is reference to the claim that lead to provisioning of a new PV.
    // Provisioners *must* create a PV that would be matched by this PVC,
    // i.e. with required capacity, accessMode, labels matching PVC.Selector and
    // so on.
    PVC *v1.PersistentVolumeClaim
    // Volume provisioning parameters from StorageClass
    Parameters map[string]string

    // Node selected by the scheduler for the volume.
    SelectedNode *v1.Node
    // Topology constraint parameter from StorageClass
    AllowedTopologies []v1.TopologySelectorTerm
}

1.3. ProvisionController

ProvisionController是一个给PVC提供PV的控制器,具体执行Provisioner接口的ProvisionDelete的方法的所有逻辑。

1.4. 开发provisioner的步骤

  1. 写一个provisioner实现Provisioner接口(包含ProvisionDelete的方法)。
  2. 通过该provisioner构建ProvisionController
  3. 执行ProvisionControllerRun方法。

2. NFS Client Provisioner

nfs-client-provisioner是一个automatic provisioner,使用NFS作为存储,自动创建PV和对应的PVC,本身不提供NFS存储,需要外部先有一套NFS存储服务。

  • PV以 ${namespace}-${pvcName}-${pvName}的命名格式提供(在NFS服务器上)
  • PV回收的时候以 archieved-${namespace}-${pvcName}-${pvName} 的命名格式(在NFS服务器上)

以下通过nfs-client-provisioner的源码分析来说明开发自定义provisioner整个过程。nfs-client-provisioner的主要代码都在provisioner.go的文件中。

nfs-client-provisioner源码地址:https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client

2.1. Main函数

2.1.1. 读取环境变量

源码如下:

func main() {
    flag.Parse()
    flag.Set("logtostderr", "true")

    server := os.Getenv("NFS_SERVER")
    if server == "" {
        glog.Fatal("NFS_SERVER not set")
    }
    path := os.Getenv("NFS_PATH")
    if path == "" {
        glog.Fatal("NFS_PATH not set")
    }
    provisionerName := os.Getenv(provisionerNameKey)
    if provisionerName == "" {
        glog.Fatalf("environment variable %s is not set! Please set it.", provisionerNameKey)
    }
    ...
}

main函数先获取NFS_SERVERNFS_PATHPROVISIONER_NAME三个环境变量的值,因此在部署nfs-client-provisioner的时候,需要将这三个环境变量的值传入。

  • NFS_SERVER:NFS服务端的IP地址。
  • NFS_PATH:NFS服务端设置的共享目录
  • PROVISIONER_NAME:provisioner的名字,需要和StorageClass对象中的provisioner字段一致。

例如StorageClass对象的yaml文件如下:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: managed-nfs-storage
provisioner: fuseim.pri/ifs # or choose another name, must match deployment's env PROVISIONER_NAME'
parameters:
  archiveOnDelete: "false" # When set to "false" your PVs will not be archived by the provisioner upon deletion of the PVC.

2.1.2. 获取clientset对象

源码如下:

// Create an InClusterConfig and use it to create a client for the controller
// to use to communicate with Kubernetes
config, err := rest.InClusterConfig()
if err != nil {
    glog.Fatalf("Failed to create config: %v", err)
}
clientset, err := kubernetes.NewForConfig(config)
if err != nil {
    glog.Fatalf("Failed to create client: %v", err)
}

通过读取对应的k8s的配置,创建clientset对象,用来执行k8s对应的API,其中主要包括对PV和PVC等对象的创建删除等操作。

2.1.3. 构造nfsProvisioner对象

源码如下:

// The controller needs to know what the server version is because out-of-tree
// provisioners aren't officially supported until 1.5
serverVersion, err := clientset.Discovery().ServerVersion()
if err != nil {
    glog.Fatalf("Error getting server version: %v", err)
}

clientNFSProvisioner := &nfsProvisioner{
    client: clientset,
    server: server,
    path:   path,
}

通过clientsetserverpath等值构造nfsProvisioner对象,同时还获取了k8s的版本信息,因为provisioners的功能在k8s 1.5及以上版本才支持。

nfsProvisioner类型定义如下:

type nfsProvisioner struct {
    client kubernetes.Interface
    server string
    path   string
}

var _ controller.Provisioner = &nfsProvisioner{}

nfsProvisioner是一个自定义的provisioner,用来实现Provisioner的接口,其中的属性除了serverpath这两个关于NFS相关的参数,还包含了client,主要用来调用k8s的API。

var _ controller.Provisioner = &nfsProvisioner{}

以上用法用来检测nfsProvisioner是否实现了Provisioner的接口。

2.1.4. 构建并运行ProvisionController

源码如下:

// Start the provision controller which will dynamically provision efs NFS
// PVs
pc := controller.NewProvisionController(clientset, provisionerName, clientNFSProvisioner, serverVersion.GitVersion)
pc.Run(wait.NeverStop)

通过nfsProvisioner构造ProvisionController对象并执行Run方法,ProvisionController实现了具体的PV和PVC的相关逻辑,Run方法以常驻进程的方式运行。

2.2. ProvisionDelete方法

2.2.1. Provision方法

nfsProvisionerProvision方法具体源码参考:https://github.com/kubernetes-incubator/external-storage/blob/master/nfs-client/cmd/nfs-client-provisioner/provisioner.go#L56

Provision方法用来创建存储资源,并且返回一个PV对象。其中入参是VolumeOptions,用来指定PV对象的相关属性。

1、构建PV和PVC的名称

func (p *nfsProvisioner) Provision(options controller.VolumeOptions) (*v1.PersistentVolume, error) {
    if options.PVC.Spec.Selector != nil {
        return nil, fmt.Errorf("claim Selector is not supported")
    }
    glog.V(4).Infof("nfs provisioner: VolumeOptions %v", options)

    pvcNamespace := options.PVC.Namespace
    pvcName := options.PVC.Name

    pvName := strings.Join([]string{pvcNamespace, pvcName, options.PVName}, "-")

    fullPath := filepath.Join(mountPath, pvName)
    glog.V(4).Infof("creating path %s", fullPath)
    if err := os.MkdirAll(fullPath, 0777); err != nil {
        return nil, errors.New("unable to create directory to provision new pv: " + err.Error())
    }
    os.Chmod(fullPath, 0777)

    path := filepath.Join(p.path, pvName)
    ...
}

通过VolumeOptions的入参,构建PV和PVC的名称,以及创建路径path。

2、构造PV对象

pv := &v1.PersistentVolume{
    ObjectMeta: metav1.ObjectMeta{
        Name: options.PVName,
    },
    Spec: v1.PersistentVolumeSpec{
        PersistentVolumeReclaimPolicy: options.PersistentVolumeReclaimPolicy,
        AccessModes:                   options.PVC.Spec.AccessModes,
        MountOptions:                  options.MountOptions,
        Capacity: v1.ResourceList{
            v1.ResourceName(v1.ResourceStorage): options.PVC.Spec.Resources.Requests[v1.ResourceName(v1.ResourceStorage)],
        },
        PersistentVolumeSource: v1.PersistentVolumeSource{
            NFS: &v1.NFSVolumeSource{
                Server:   p.server,
                Path:     path,
                ReadOnly: false,
            },
        },
    },
}
return pv, nil

综上可以看出,Provision方法只是通过VolumeOptions参数来构建PV对象,并没有执行具体PV的创建或删除的操作。

不同类型的Provisioner的,一般是PersistentVolumeSource类型和参数不同,例如nfs-provisioner对应的PersistentVolumeSourceNFS,并且需要传入NFS相关的参数:ServerPath等。

2.2.2. Delete方法

nfsProvisionerdelete方法具体源码参考:https://github.com/kubernetes-incubator/external-storage/blob/master/nfs-client/cmd/nfs-client-provisioner/provisioner.go#L99

1、获取pvName和path等相关参数

func (p *nfsProvisioner) Delete(volume *v1.PersistentVolume) error {
    path := volume.Spec.PersistentVolumeSource.NFS.Path
    pvName := filepath.Base(path)
    oldPath := filepath.Join(mountPath, pvName)
    if _, err := os.Stat(oldPath); os.IsNotExist(err) {
        glog.Warningf("path %s does not exist, deletion skipped", oldPath)
        return nil
    }
    ...
}

通过pathpvName生成oldPath,其中oldPath是原先NFS服务器上pod对应的数据持久化存储路径。

2、获取archiveOnDelete参数并删除数据

// Get the storage class for this volume.
storageClass, err := p.getClassForVolume(volume)
if err != nil {
    return err
}
// Determine if the "archiveOnDelete" parameter exists.
// If it exists and has a falsey value, delete the directory.
// Otherwise, archive it.
archiveOnDelete, exists := storageClass.Parameters["archiveOnDelete"]
if exists {
    archiveBool, err := strconv.ParseBool(archiveOnDelete)
    if err != nil {
        return err
    }
    if !archiveBool {
        return os.RemoveAll(oldPath)
    }
}

如果storageClass对象中指定archiveOnDelete参数并且值为false,则会自动删除oldPath下的所有数据,即pod对应的数据持久化存储数据。

archiveOnDelete字面意思为删除时是否存档,false表示不存档,即删除数据,true表示存档,即重命名路径。

3、重命名旧数据路径

archivePath := filepath.Join(mountPath, "archived-"+pvName)
glog.V(4).Infof("archiving path %s to %s", oldPath, archivePath)
return os.Rename(oldPath, archivePath)

如果storageClass对象中没有指定archiveOnDelete参数或者值为true,表明需要删除时存档,即将oldPath重命名,命名格式为oldPath前面增加archived-的前缀。

3. ProvisionController

3.1. ProvisionController结构体

源码具体参考:https://github.com/kubernetes-incubator/external-storage/blob/master/lib/controller/controller.go#L82

ProvisionController是一个给PVC提供PV的控制器,具体执行Provisioner接口的ProvisionDelete的方法的所有逻辑。

3.1.1. 入参

// ProvisionController is a controller that provisions PersistentVolumes for
// PersistentVolumeClaims.
type ProvisionController struct {
    client kubernetes.Interface

    // The name of the provisioner for which this controller dynamically
    // provisions volumes. The value of annDynamicallyProvisioned and
    // annStorageProvisioner to set & watch for, respectively
    provisionerName string

    // The provisioner the controller will use to provision and delete volumes.
    // Presumably this implementer of Provisioner carries its own
    // volume-specific options and such that it needs in order to provision
    // volumes.
    provisioner Provisioner

    // Kubernetes cluster server version:
    // * 1.4: storage classes introduced as beta. Technically out-of-tree dynamic
    // provisioning is not officially supported, though it works
    // * 1.5: storage classes stay in beta. Out-of-tree dynamic provisioning is
    // officially supported
    // * 1.6: storage classes enter GA
    kubeVersion *utilversion.Version
    ...
}

clientprovisionerNameprovisionerkubeVersion等属性作为NewProvisionController的入参。

  • client:clientset客户端,用来调用k8s的API。
  • provisionerName:provisioner的名字,需要和StorageClass对象中的provisioner字段一致。
  • provisioner:具体的provisioner的实现者,本文为nfsProvisioner
  • kubeVersion:k8s的版本信息。

3.1.2. Controller和Informer

type ProvisionController struct {
    ...
    claimInformer    cache.SharedInformer
    claims           cache.Store
    claimController  cache.Controller
    volumeInformer   cache.SharedInformer
    volumes          cache.Store
    volumeController cache.Controller
    classInformer    cache.SharedInformer
    classes          cache.Store
    classController  cache.Controller
    ...
}

ProvisionController结构体中包含了PVPVCStorageClass三个对象的ControllerInformerStore,主要用来执行这三个对象的相关操作。

  • Controller:通用的控制框架
  • Informer:消息通知器
  • Store:通用的对象存储接口

3.1.3. workqueue

type ProvisionController struct {
    ...
    claimQueue  workqueue.RateLimitingInterface
    volumeQueue workqueue.RateLimitingInterface
    ...
}

claimQueuevolumeQueue分别是PVPVC的任务队列。

3.1.4. 其他

// Identity of this controller, generated at creation time and not persisted
// across restarts. Useful only for debugging, for seeing the source of
// events. controller.provisioner may have its own, different notion of
// identity which may/may not persist across restarts
id            string
component     string
eventRecorder record.EventRecorder

resyncPeriod time.Duration

exponentialBackOffOnError bool
threadiness               int

createProvisionedPVRetryCount int
createProvisionedPVInterval   time.Duration

failedProvisionThreshold, failedDeleteThreshold int

// The port for metrics server to serve on.
metricsPort int32
// The IP address for metrics server to serve on.
metricsAddress string
// The path of metrics endpoint path.
metricsPath string

// Parameters of leaderelection.LeaderElectionConfig.
leaseDuration, renewDeadline, retryPeriod time.Duration

hasRun     bool
hasRunLock *sync.Mutex

3.2. NewProvisionController方法

源码地址:https://github.com/kubernetes-incubator/external-storage/blob/master/lib/controller/controller.go#L418

NewProvisionController方法主要用来构造ProvisionController

3.2.1. 初始化默认值

// NewProvisionController creates a new provision controller using
// the given configuration parameters and with private (non-shared) informers.
func NewProvisionController(
    client kubernetes.Interface,
    provisionerName string,
    provisioner Provisioner,
    kubeVersion string,
    options ...func(*ProvisionController) error,
) *ProvisionController {
    ...
    controller := &ProvisionController{
        client:                        client,
        provisionerName:               provisionerName,
        provisioner:                   provisioner,
        kubeVersion:                   utilversion.MustParseSemantic(kubeVersion),
        id:                            id,
        component:                     component,
        eventRecorder:                 eventRecorder,
        resyncPeriod:                  DefaultResyncPeriod,
        exponentialBackOffOnError:     DefaultExponentialBackOffOnError,
        threadiness:                   DefaultThreadiness,
        createProvisionedPVRetryCount: DefaultCreateProvisionedPVRetryCount,
        createProvisionedPVInterval:   DefaultCreateProvisionedPVInterval,
        failedProvisionThreshold:      DefaultFailedProvisionThreshold,
        failedDeleteThreshold:         DefaultFailedDeleteThreshold,
        leaseDuration:                 DefaultLeaseDuration,
        renewDeadline:                 DefaultRenewDeadline,
        retryPeriod:                   DefaultRetryPeriod,
        metricsPort:                   DefaultMetricsPort,
        metricsAddress:                DefaultMetricsAddress,
        metricsPath:                   DefaultMetricsPath,
        hasRun:                        false,
        hasRunLock:                    &sync.Mutex{},
    }
    ...
}

3.2.2. 初始化任务队列

ratelimiter := workqueue.NewMaxOfRateLimiter(
    workqueue.NewItemExponentialFailureRateLimiter(15*time.Second, 1000*time.Second),
    &workqueue.BucketRateLimiter{Limiter: rate.NewLimiter(rate.Limit(10), 100)},
)
if !controller.exponentialBackOffOnError {
    ratelimiter = workqueue.NewMaxOfRateLimiter(
        workqueue.NewItemExponentialFailureRateLimiter(15*time.Second, 15*time.Second),
        &workqueue.BucketRateLimiter{Limiter: rate.NewLimiter(rate.Limit(10), 100)},
    )
}
controller.claimQueue = workqueue.NewNamedRateLimitingQueue(ratelimiter, "claims")
controller.volumeQueue = workqueue.NewNamedRateLimitingQueue(ratelimiter, "volumes")

3.2.3. ListWatch

// PVC
claimSource := &cache.ListWatch{
    ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
        return client.CoreV1().PersistentVolumeClaims(v1.NamespaceAll).List(options)
    },
    WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
        return client.CoreV1().PersistentVolumeClaims(v1.NamespaceAll).Watch(options)
    },
}
// PV
volumeSource := &cache.ListWatch{
    ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
        return client.CoreV1().PersistentVolumes().List(options)
    },
    WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
        return client.CoreV1().PersistentVolumes().Watch(options)
    },
}
// StorageClass
classSource = &cache.ListWatch{
    ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
        return client.StorageV1().StorageClasses().List(options)
    },
    WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
        return client.StorageV1().StorageClasses().Watch(options)
    },
}

list-watch机制是k8s中用来监听对象变化的核心机制,ListWatch包含ListFuncWatchFunc两个函数,且不能为空,以上代码分别构造了PV、PVC、StorageClass三个对象的ListWatch结构体。该机制的实现在client-gocache包中,具体参考:https://godoc.org/k8s.io/client-go/tools/cache。

更多ListWatch代码如下:

具体参考:https://github.com/kubernetes-incubator/external-storage/blob/89b0aaf6413b249b37834b124fc314ef7b8ee949/vendor/k8s.io/client-go/tools/cache/listwatch.go#L34

// ListerWatcher is any object that knows how to perform an initial list and start a watch on a resource.
type ListerWatcher interface {
    // List should return a list type object; the Items field will be extracted, and the
    // ResourceVersion field will be used to start the watch in the right place.
    List(options metav1.ListOptions) (runtime.Object, error)
    // Watch should begin a watch at the specified version.
    Watch(options metav1.ListOptions) (watch.Interface, error)
}

// ListFunc knows how to list resources
type ListFunc func(options metav1.ListOptions) (runtime.Object, error)

// WatchFunc knows how to watch resources
type WatchFunc func(options metav1.ListOptions) (watch.Interface, error)

// ListWatch knows how to list and watch a set of apiserver resources.  It satisfies the ListerWatcher interface.
// It is a convenience function for users of NewReflector, etc.
// ListFunc and WatchFunc must not be nil
type ListWatch struct {
    ListFunc  ListFunc
    WatchFunc WatchFunc
    // DisableChunking requests no chunking for this list watcher.
    DisableChunking bool
}

3.2.4. ResourceEventHandlerFuncs

// PVC
claimHandler := cache.ResourceEventHandlerFuncs{
    AddFunc:    func(obj interface{}) { controller.enqueueWork(controller.claimQueue, obj) },
    UpdateFunc: func(oldObj, newObj interface{}) { controller.enqueueWork(controller.claimQueue, newObj) },
    DeleteFunc: func(obj interface{}) { controller.forgetWork(controller.claimQueue, obj) },
}
// PV
volumeHandler := cache.ResourceEventHandlerFuncs{
    AddFunc:    func(obj interface{}) { controller.enqueueWork(controller.volumeQueue, obj) },
    UpdateFunc: func(oldObj, newObj interface{}) { controller.enqueueWork(controller.volumeQueue, newObj) },
    DeleteFunc: func(obj interface{}) { controller.forgetWork(controller.volumeQueue, obj) },
}
// StorageClass
classHandler := cache.ResourceEventHandlerFuncs{
    // We don't need an actual event handler for StorageClasses,
    // but we must pass a non-nil one to cache.NewInformer()
    AddFunc:    nil,
    UpdateFunc: nil,
    DeleteFunc: nil,
}

ResourceEventHandlerFuncs是资源事件处理函数,主要用来对k8s资源对象增删改变化的事件进行消息通知,该函数实现了ResourceEventHandler的接口。具体代码逻辑在client-go的cache包中。

更多ResourceEventHandlerFuncs代码可参考:

// ResourceEventHandler can handle notifications for events that happen to a
// resource. The events are informational only, so you can't return an
// error.
//  * OnAdd is called when an object is added.
//  * OnUpdate is called when an object is modified. Note that oldObj is the
//      last known state of the object-- it is possible that several changes
//      were combined together, so you can't use this to see every single
//      change. OnUpdate is also called when a re-list happens, and it will
//      get called even if nothing changed. This is useful for periodically
//      evaluating or syncing something.
//  * OnDelete will get the final state of the item if it is known, otherwise
//      it will get an object of type DeletedFinalStateUnknown. This can
//      happen if the watch is closed and misses the delete event and we don't
//      notice the deletion until the subsequent re-list.
type ResourceEventHandler interface {
    OnAdd(obj interface{})
    OnUpdate(oldObj, newObj interface{})
    OnDelete(obj interface{})
}

// ResourceEventHandlerFuncs is an adaptor to let you easily specify as many or
// as few of the notification functions as you want while still implementing
// ResourceEventHandler.
type ResourceEventHandlerFuncs struct {
    AddFunc    func(obj interface{})
    UpdateFunc func(oldObj, newObj interface{})
    DeleteFunc func(obj interface{})
}

3.2.5. 构造Store和Controller

1、PVC

if controller.claimInformer != nil {
    controller.claimInformer.AddEventHandlerWithResyncPeriod(claimHandler, controller.resyncPeriod)
    controller.claims, controller.claimController =
        controller.claimInformer.GetStore(),
        controller.claimInformer.GetController()
} else {
    controller.claims, controller.claimController =
        cache.NewInformer(
            claimSource,
            &v1.PersistentVolumeClaim{},
            controller.resyncPeriod,
            claimHandler,
        )
}

2、PV

if controller.volumeInformer != nil {
    controller.volumeInformer.AddEventHandlerWithResyncPeriod(volumeHandler, controller.resyncPeriod)
    controller.volumes, controller.volumeController =
        controller.volumeInformer.GetStore(),
        controller.volumeInformer.GetController()
} else {
    controller.volumes, controller.volumeController =
        cache.NewInformer(
            volumeSource,
            &v1.PersistentVolume{},
            controller.resyncPeriod,
            volumeHandler,
        )
}

3、StorageClass

if controller.classInformer != nil {
    // no resource event handler needed for StorageClasses
    controller.classes, controller.classController =
        controller.classInformer.GetStore(),
        controller.classInformer.GetController()
} else {
    controller.classes, controller.classController = cache.NewInformer(
        classSource,
        versionedClassType,
        controller.resyncPeriod,
        classHandler,
    )
}

通过cache.NewInformer的方法构造,入参是ListWatch结构体和ResourceEventHandlerFuncs函数等,返回值是StoreController

通过以上各个部分的构造,最后返回一个具体的ProvisionController对象。

3.3. ProvisionController.Run方法

ProvisionControllerRun方法是以常驻进程的方式运行,函数内部再运行其他的controller。

3.3.1. prometheus数据收集

// Run starts all of this controller's control loops
func (ctrl *ProvisionController) Run(stopCh <-chan struct{}) {

    run := func(stopCh <-chan struct{}) {
        ...
        if ctrl.metricsPort > 0 {
            prometheus.MustRegister([]prometheus.Collector{
                metrics.PersistentVolumeClaimProvisionTotal,
                metrics.PersistentVolumeClaimProvisionFailedTotal,
                metrics.PersistentVolumeClaimProvisionDurationSeconds,
                metrics.PersistentVolumeDeleteTotal,
                metrics.PersistentVolumeDeleteFailedTotal,
                metrics.PersistentVolumeDeleteDurationSeconds,
            }...)
            http.Handle(ctrl.metricsPath, promhttp.Handler())
            address := net.JoinHostPort(ctrl.metricsAddress, strconv.FormatInt(int64(ctrl.metricsPort), 10))
            glog.Infof("Starting metrics server at %s\n", address)
            go wait.Forever(func() {
                err := http.ListenAndServe(address, nil)
                if err != nil {
                    glog.Errorf("Failed to listen on %s: %v", address, err)
                }
            }, 5*time.Second)
        }
        ...
}

3.3.2. Controller.Run

// If a SharedInformer has been passed in, this controller should not
// call Run again
if ctrl.claimInformer == nil {
    go ctrl.claimController.Run(stopCh)
}
if ctrl.volumeInformer == nil {
    go ctrl.volumeController.Run(stopCh)
}
if ctrl.classInformer == nil {
    go ctrl.classController.Run(stopCh)
}

运行消息通知器Informer。

3.3.3. Worker

for i := 0; i < ctrl.threadiness; i++ {
    go wait.Until(ctrl.runClaimWorker, time.Second, stopCh)
    go wait.Until(ctrl.runVolumeWorker, time.Second, stopCh)
}

runClaimWorkerrunVolumeWorker分别为PVC和PV的worker,这两个的具体执行体分别是processNextClaimWorkItemprocessNextVolumeWorkItem

执行流程如下:

PVC的函数调用流程

runClaimWorker→processNextClaimWorkItem→syncClaimHandler→syncClaim→provisionClaimOperation

PV的函数调用流程

runVolumeWorker→processNextVolumeWorkItem→syncVolumeHandler→syncVolume→deleteVolumeOperation

可见最后执行的函数分别是provisionClaimOperationdeleteVolumeOperation

3.4. Operation

3.4.1. provisionClaimOperation

1、provisionClaimOperation入参是PVC,通过PVC获得PV对象,并判断PV对象是否存在,如果存在则退出后续操作。

// provisionClaimOperation attempts to provision a volume for the given claim.
// Returns error, which indicates whether provisioning should be retried
// (requeue the claim) or not
func (ctrl *ProvisionController) provisionClaimOperation(claim *v1.PersistentVolumeClaim) error {
    // Most code here is identical to that found in controller.go of kube's PV controller...
    claimClass := helper.GetPersistentVolumeClaimClass(claim)
    operation := fmt.Sprintf("provision %q class %q", claimToClaimKey(claim), claimClass)
    glog.Infof(logOperation(operation, "started"))

    //  A previous doProvisionClaim may just have finished while we were waiting for
    //  the locks. Check that PV (with deterministic name) hasn't been provisioned
    //  yet.
    pvName := ctrl.getProvisionedVolumeNameForClaim(claim)
    volume, err := ctrl.client.CoreV1().PersistentVolumes().Get(pvName, metav1.GetOptions{})
    if err == nil && volume != nil {
        // Volume has been already provisioned, nothing to do.
        glog.Infof(logOperation(operation, "persistentvolume %q already exists, skipping", pvName))
        return nil
    }
    ...
}

2、获取StorageClass对象中的ProvisionerReclaimPolicy参数,如果provisionerNameStorageClass对象中的provisioner字段不一致则报错并退出执行。

provisioner, parameters, err := ctrl.getStorageClassFields(claimClass)
if err != nil {
    glog.Errorf(logOperation(operation, "error getting claim's StorageClass's fields: %v", err))
    return nil
}
if provisioner != ctrl.provisionerName {
    // class.Provisioner has either changed since shouldProvision() or
    // annDynamicallyProvisioned contains different provisioner than
    // class.Provisioner.
    glog.Errorf(logOperation(operation, "unknown provisioner %q requested in claim's StorageClass", provisioner))
    return nil
}
// Check if this provisioner can provision this claim.
if err = ctrl.canProvision(claim); err != nil {
    ctrl.eventRecorder.Event(claim, v1.EventTypeWarning, "ProvisioningFailed", err.Error())
    glog.Errorf(logOperation(operation, "failed to provision volume: %v", err))
    return nil
}

reclaimPolicy := v1.PersistentVolumeReclaimDelete
if ctrl.kubeVersion.AtLeast(utilversion.MustParseSemantic("v1.8.0")) {
    reclaimPolicy, err = ctrl.fetchReclaimPolicy(claimClass)
    if err != nil {
        return err
    }
}

3、执行具体的provisioner.Provision方法,构建PV对象,例如本文中的provisionernfs-provisioner

options := VolumeOptions{
    PersistentVolumeReclaimPolicy: reclaimPolicy,
    PVName:            pvName,
    PVC:               claim,
    MountOptions:      mountOptions,
    Parameters:        parameters,
    SelectedNode:      selectedNode,
    AllowedTopologies: allowedTopologies,
}

ctrl.eventRecorder.Event(claim, v1.EventTypeNormal, "Provisioning", fmt.Sprintf("External provisioner is provisioning volume for claim %q", claimToClaimKey(claim)))

volume, err = ctrl.provisioner.Provision(options)
if err != nil {
    if ierr, ok := err.(*IgnoredError); ok {
        // Provision ignored, do nothing and hope another provisioner will provision it.
        glog.Infof(logOperation(operation, "volume provision ignored: %v", ierr))
        return nil
    }
    err = fmt.Errorf("failed to provision volume with StorageClass %q: %v", claimClass, err)
    ctrl.eventRecorder.Event(claim, v1.EventTypeWarning, "ProvisioningFailed", err.Error())
    return err
}

4、创建k8s的PV对象。

// Try to create the PV object several times
for i := 0; i < ctrl.createProvisionedPVRetryCount; i++ {
    glog.Infof(logOperation(operation, "trying to save persistentvvolume %q", volume.Name))
    if _, err = ctrl.client.CoreV1().PersistentVolumes().Create(volume); err == nil || apierrs.IsAlreadyExists(err) {
        // Save succeeded.
        if err != nil {
            glog.Infof(logOperation(operation, "persistentvolume %q already exists, reusing", volume.Name))
            err = nil
        } else {
            glog.Infof(logOperation(operation, "persistentvolume %q saved", volume.Name))
        }
        break
    }
    // Save failed, try again after a while.
    glog.Infof(logOperation(operation, "failed to save persistentvolume %q: %v", volume.Name, err))
    time.Sleep(ctrl.createProvisionedPVInterval)
}

5、创建PV失败,清理存储资源。

if err != nil {
    // Save failed. Now we have a storage asset outside of Kubernetes,
    // but we don't have appropriate PV object for it.
    // Emit some event here and try to delete the storage asset several
    // times.
    ...
    for i := 0; i < ctrl.createProvisionedPVRetryCount; i++ {
        if err = ctrl.provisioner.Delete(volume); err == nil {
            // Delete succeeded
            glog.Infof(logOperation(operation, "cleaning volume %q succeeded", volume.Name))
            break
        }
        // Delete failed, try again after a while.
        glog.Infof(logOperation(operation, "failed to clean volume %q: %v", volume.Name, err))
        time.Sleep(ctrl.createProvisionedPVInterval)
    }
    if err != nil {
        // Delete failed several times. There is an orphaned volume and there
        // is nothing we can do about it.
        strerr := fmt.Sprintf("Error cleaning provisioned volume for claim %s: %v. Please delete manually.", claimToClaimKey(claim), err)
        glog.Error(logOperation(operation, strerr))
        ctrl.eventRecorder.Event(claim, v1.EventTypeWarning, "ProvisioningCleanupFailed", strerr)
    }
}

如果创建成功,则打印成功的日志,并返回nil

3.4.2. deleteVolumeOperation

1、deleteVolumeOperation入参是PV,先获得PV对象,并判断是否需要删除。

// deleteVolumeOperation attempts to delete the volume backing the given
// volume. Returns error, which indicates whether deletion should be retried
// (requeue the volume) or not
func (ctrl *ProvisionController) deleteVolumeOperation(volume *v1.PersistentVolume) error {
    ...
    // This method may have been waiting for a volume lock for some time.
    // Our check does not have to be as sophisticated as PV controller's, we can
    // trust that the PV controller has set the PV to Released/Failed and it's
    // ours to delete
    newVolume, err := ctrl.client.CoreV1().PersistentVolumes().Get(volume.Name, metav1.GetOptions{})
    if err != nil {
        return nil
    }
    if !ctrl.shouldDelete(newVolume) {
        glog.Infof(logOperation(operation, "persistentvolume no longer needs deletion, skipping"))
        return nil
    }
    ...
}

2、调用具体的provisionerDelete方法,例如,如果是nfs-provisioner,则是调用nfs-provisioner的Delete方法。

err = ctrl.provisioner.Delete(volume)
if err != nil {
    if ierr, ok := err.(*IgnoredError); ok {
        // Delete ignored, do nothing and hope another provisioner will delete it.
        glog.Infof(logOperation(operation, "volume deletion ignored: %v", ierr))
        return nil
    }
    // Delete failed, emit an event.
    glog.Errorf(logOperation(operation, "volume deletion failed: %v", err))
    ctrl.eventRecorder.Event(volume, v1.EventTypeWarning, "VolumeFailedDelete", err.Error())
    return err
}

3、删除k8s中的PV对象。

// Delete the volume
if err = ctrl.client.CoreV1().PersistentVolumes().Delete(volume.Name, nil); err != nil {
    // Oops, could not delete the volume and therefore the controller will
    // try to delete the volume again on next update.
    glog.Infof(logOperation(operation, "failed to delete persistentvolume: %v", err))
    return err
}

4. 总结

  1. Provisioner接口包含ProvisionDelete两个方法,自定义的provisioner需要实现这两个方法,这两个方法只是处理了跟存储类型相关的事项,并没有针对PVPVC对象的增删等操作。
  2. Provision方法主要用来构造PV对象,不同类型的Provisioner的,一般是PersistentVolumeSource类型和参数不同,例如nfs-provisioner对应的PersistentVolumeSourceNFS,并且需要传入NFS相关的参数:ServerPath等。
  3. Delete方法主要针对对应的存储类型,做数据存档(备份)或删除的处理。
  4. StorageClass对象需要单独创建,用来指定具体的provisioner来执行相关逻辑。
  5. provisionClaimOperationdeleteVolumeOperation具体执行了k8s中PV对象的创建和删除操作,同时调用了具体provisionerProvisionDelete两个方法来对存储数据做处理。

参考文章

Copyright © www.huweihuang.com 2017-2018 all right reserved,powered by GitbookUpdated at 2018-10-19 20:34:12

results matching ""

    No results matching ""